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EcoNoMics vs. REALITY OR, ECONOMICS IS A SCIENCE

Figure 1

Unemployment Rate With and Without the Recovery Plan
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EXAMPLE

» Take a two-state Markov chain, in which you observe the
following data:

Xe={2,2,2,2,2,2,2,2,2,2,2,2,2/1,1,2,2/2,2 2 1}

» Say we wanted to estimate the markov process:

p11 1—pu1

m =
1—pxn  p2

» How do we do it? (What is your estimate?)
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MAXIMUM LIKELIHOOD

» We can write down the likelihood of seeing each type of
transition:

L11=p11
L12 = p12
Lo 1= pa1
Lo 2 = p2

.
L= H(ﬁl—u)x“(51—>2)X12(£2—>1)X21(£2—>2)X22
i=1
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MAXIMUM LIKELIHOOD

» The likelihood:

T

£=T](p1)™(1 = pr)* (1 = p22)® (p22)
i=1

» Taking logs:

T

log £ = lel log(p11) + x12 log(1 — p11)
i—1

+ xo1 log(1 — p22) + x22 log(p22)

» Is this all we can do?
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MAXIMUM LIKELIHOOD

» The likelihood:

T

£=T](p1)™(1 = pr)* (1 = p22)® (p22)
i=1

» Taking logs:

-
log £ = lel log(p11) + x12 log(1 — p11)
i=1
+ x01 log(1 — p22) + x22 log(p22)

> |s this all we can do? (Hint: no.)
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MAXIMUM LIKELIHOOD

The likelihood:

T

£=T](p1)™(1 = pr)* (1 = p22)® (p22)
i=1

Taking logs:

-
log £ = lel log(p11) + x12 log(1 — p11)
i=1
+ x01 log(1 — p22) + x22 log(p22)

Is this all we can do? (Hint: no.)

The first observation gives us data!
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BETTER MAXIMUM LIKELIHOOD
» The likelihood:

T

log £ = an log(p11) + x12 log(1 — p11)
i—1

+ xo1 log(1 — p22) + x22 log(p22)

» Denote a dummy for the first observation as x[1 or x[?,
depending on the value:
T
log £ = lel log(p11) + x12 log(1 — p11)
i=1
+ x21 log(1 — p22) + x22 log(p22)

+gu<1—m2>+xm<1—Pﬂ)
2 — p11 — P2 2—p11— P2

» Why?
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RESULTS

» We could do things closed form (how?)
» Or numerically (see Markov.m)

» What else can we do?
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BAYES RULE
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MORE FUN WITH MARKOVS

Now imagine we didn't observe the states x; directly, but
observed some noise process y;

If state x; = 1, then y; ~ N(u1,02)
If state x; = 2, then y: N (ua, a%)

To skip annoying notation for the first step, let's say we knew
the first state but from then on out we knew nothing else.
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EXAMPLE

X1 = 1
[ 09 01
T™=1 095 0.05

_yt|Xt =1~ ./\/'(07 10)
yt‘Xt = 2 ~ N(1,4)

P(Xf‘yt) = P(yt)

See Markov.2

P(xt) P(yt|xt)
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KALMAN FILTER: MOTIVATION

> Life is full of scenarios in which we see a signal about some
true underlying process but never observe the truth

» Missiles
» Polls
» Recessions

» Economic variables
» We typically have some belief of what the underlying object is,
where it's going to go, and get some signal related to the
object

» How do we put all our information together?
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KALMAN FILTER: PREVIEW TO LEMMA

Let X explain Y

Y=XB+¢€
Then:
f=X'X)X'Y
And:
Y = X8
So:

Var(Y — Y|X) = Var(Y — X3|X)
= Var(Y|X) + 2 Var(X|X) — 28Cov(Y, X|X))
= Var(Y|X) + 282 Var(Y)™?
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KALMAN FILTER: LEMMA*

(o) g )

Y|X ~ N (Sxy Sy X, Syyr|x)

Then:

Where, letting A = SXY/S)&
Syvix = Syyr — Sxy'Sxx Syx = Syyr — ASyx/ A’

In other words, our expectation of X given Y comes from a
regression, and our conditional variance is our unconditional
variance minus the regression coefficient squared times the

variance of our signal.

* This and the next two slides are inspired by Harald Uhlig's notation &
wonderful slides.
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KALMAN SYSTEM

You have an observation equation:
Yi=Hi&r+ e e ~N(0,%4)
And a state equation:
Et1 = Fep1&e +mer1 M1 ~ N (0, D)

We assume that €; and 7); are independent.

Y} is a noisy observation of &;, which moves around with
noise.
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UPDATING OUR BELIEFS

» We start with some beliefs from last period about where &
would be this period (called &;j¢_1).

» We summarize these as:
ft|t—1 ~N (€t|t—1)Qt\t—1)

» We want to look at information today and say what we think
§ is, calling this &y;.
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FIRST STEP: BEST GUESS OF WHAT THE SIGNAL WILL
BE

> We start with beliefs:
e~ N (ét|t—17 Qt\t-1)
» And we know, as a law:
Yi=Hle + € e ~N(0,Xy)

» Then we have our best guess of what Y will be, along with its

variance:
Ye= Htft\t—l

5YY\t = HtQt|t—1Ht + 2
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SECOND STEP: USE SURPRISE INFO TO UPDATE
PRIOR BELIEFS

» We have our unexpected information:

gt:Yt—Yt

v

Then our best fit is, like a regression fit:

~ ~ 1 .
§t|t = ft\t—l =+ 5§Y’|t5yy/|t€t

v

Where our “signal” is:

SgY’|t = Qt\t—lHé

v

And our beliefs are updated:

Qt|t = Qf\t—l - 5§Y'|t5;\1ﬂ|tSY§’\t
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THIRD STEP: USE CURRENT BEST BELIEFS TO FIND
TOMORROW’S BEST BELIEFS

» We have our beliefs for today, §At|t and €y

» We want:
o1 ~ N (Eeqa)er Qerare)

» Update using the law of motion:

ft+1\t = Ft+1ft|t

Qiyae = Ft+1Qt|tFtl+1 + P
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SUMMARIZING THE KALMAN FILTER

Yi ~ N(Htft, zt), e ~ N(Ft+1ft, ¢t+1)

> Given & ~ N (&je_1, o),

1. Forecast Y; given what you know:
Ye=Heeo1 SyvreHeQue 1 HL + T,
2. Update &; given surprise:
Eeie = €1 T SevieSyy(Ye = Vi)

Quje = Qujeo1 + Sev1eSyyr e Sevie

Where: Sey /e = Qi1 Hj
3. Forecast and set up for tomorrow

R R ,
Sevr1le = Ferabeye Qepe)e = Fer1QeeFeyg + P
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CODING IT

See Kalman.m
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USES

» Estimating underlying data, like polls, recessions

> Alternatively, think of your regression coefficients as your
unknown £ and your data as Y;

» Then for:

Y ~ N(Htfh Zt)a §t ~ N(Ft+1§t7 q>t+1)

Y; is your dependent variable

H; is your independent variable

Y ; is your noise term

Fi11 is just 1, if your coefficients are constant
&, is zero, if your coefficients are constant.

vV vy VY VvVYYy

» Now you can run Kalman filter point-by-point on your data to
uncover your belief distribution over your coefficients.
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