Likelifoods and Bayes
 (See Statistics)

Trevor Gallen

Fall 2015

Economics vs. Reality or, Economics is a Science

Figure 1
Unemployment Rate With and Without the Recovery Plan

Example

- Take a two-state Markov chain, in which you observe the following data:

$$
X_{t}=\{2,2,2,2,2,2,2,2,2,2,2,2,2,1,1,2,2,2,2,2,1\}
$$

- Say we wanted to estimate the markov process:

$$
\pi=\left[\begin{array}{cc}
p_{11} & 1-p_{11} \\
1-p_{22} & p_{22}
\end{array}\right]
$$

- How do we do it? (What is your estimate?)

Maximum Likelihood

- We can write down the likelihood of seeing each type of transition:

$$
\begin{aligned}
& \mathcal{L}_{1 \rightarrow 1}=p_{11} \\
& \mathcal{L}_{1 \rightarrow 2}=p_{12} \\
& \mathcal{L}_{2 \rightarrow 1}=p_{21} \\
& \mathcal{L}_{2 \rightarrow 2}=p_{22}
\end{aligned}
$$

Or:

$$
\mathcal{L}=\prod_{i=1}^{T}\left(\mathcal{L}_{1 \rightarrow 1}\right)^{x_{11}}\left(\mathcal{L}_{1 \rightarrow 2}\right)^{x_{12}}\left(\mathcal{L}_{2 \rightarrow 1}\right)^{x_{21}}\left(\mathcal{L}_{2 \rightarrow 2}\right)^{x_{22}}
$$

Maximum Likelihood

- The likelihood:

$$
\mathcal{L}=\prod_{i=1}^{T}\left(p_{11}\right)^{x_{11}}\left(1-p_{11}\right)^{x_{12}}\left(1-p_{22}\right)^{x_{21}}\left(p_{22}\right)^{x_{22}}
$$

- Taking logs:

$$
\begin{aligned}
\log \mathcal{L} & =\sum_{i=1}^{T} x_{11} \log \left(p_{11}\right)+x_{12} \log \left(1-p_{11}\right) \\
& +x_{21} \log \left(1-p_{22}\right)+x_{22} \log \left(p_{22}\right)
\end{aligned}
$$

- Is this all we can do?

Maximum Likelihood

- The likelihood:

$$
\mathcal{L}=\prod_{i=1}^{T}\left(p_{11}\right)^{x_{11}}\left(1-p_{11}\right)^{x_{12}}\left(1-p_{22}\right)^{x_{21}}\left(p_{22}\right)^{x_{22}}
$$

- Taking logs:

$$
\begin{aligned}
\log \mathcal{L} & =\sum_{i=1}^{T} x_{11} \log \left(p_{11}\right)+x_{12} \log \left(1-p_{11}\right) \\
& +x_{21} \log \left(1-p_{22}\right)+x_{22} \log \left(p_{22}\right)
\end{aligned}
$$

- Is this all we can do? (Hint: no.)

Maximum Likelifood

- The likelihood:

$$
\mathcal{L}=\prod_{i=1}^{T}\left(p_{11}\right)^{x_{11}}\left(1-p_{11}\right)^{x_{12}}\left(1-p_{22}\right)^{x_{21}}\left(p_{22}\right)^{x_{22}}
$$

- Taking logs:

$$
\begin{aligned}
\log \mathcal{L} & =\sum_{i=1}^{T} x_{11} \log \left(p_{11}\right)+x_{12} \log \left(1-p_{11}\right) \\
& +x_{21} \log \left(1-p_{22}\right)+x_{22} \log \left(p_{22}\right)
\end{aligned}
$$

- Is this all we can do? (Hint: no.)
- The first observation gives us data!

Better Maximum Likelihood

- The likelihood:

$$
\begin{aligned}
\log \mathcal{L} & =\sum_{i=1}^{T} x_{11} \log \left(p_{11}\right)+x_{12} \log \left(1-p_{11}\right) \\
& +x_{21} \log \left(1-p_{22}\right)+x_{22} \log \left(p_{22}\right)
\end{aligned}
$$

- Denote a dummy for the first observation as $x^{[1]}$ or $x^{[2]}$, depending on the value:

$$
\begin{aligned}
\log \mathcal{L} & =\sum_{i=1}^{T} x_{11} \log \left(p_{11}\right)+x_{12} \log \left(1-p_{11}\right) \\
& +x_{21} \log \left(1-p_{22}\right)+x_{22} \log \left(p_{22}\right) \\
& +x^{[1]}\left(\frac{1-p_{22}}{2-p_{11}-p_{22}}\right)+x^{[2]}\left(\frac{1-p_{11}}{2-p_{11}-p_{22}}\right)
\end{aligned}
$$

- Why?

Results

- We could do things closed form (how?)
- Or numerically (see Markov.m)
- What else can we do?

Bayes Rule

$$
P(A \mid B)=\frac{P(A) P(B \mid A)}{P(B)}
$$

More Fun with Markovs

- Now imagine we didn't observe the states x_{t} directly, but observed some noise process y_{t}
- If state $x_{t}=1$, then $y_{t} \sim \mathcal{N}\left(\mu_{1}, \sigma_{1}^{2}\right)$
- If state $x_{t}=2$, then $y_{t} \mathcal{N}\left(\mu_{2}, \sigma_{2}^{2}\right)$
- To skip annoying notation for the first step, let's say we knew the first state but from then on out we knew nothing else.

Example

$$
\begin{gathered}
x_{1}=1 \\
\pi=\left[\begin{array}{cc}
0.9 & 0.1 \\
0.95 & 0.05
\end{array}\right] \\
y_{t} \mid x_{t}=1 \sim \mathcal{N}(0,10) \\
y_{t} \mid x_{t}=2 \sim \mathcal{N}(1,4) \\
P\left(x_{t} \mid y_{t}\right)=\frac{P\left(x_{t}\right) P\left(y_{t} \mid x_{t}\right)}{P\left(y_{t}\right)}
\end{gathered}
$$

See Markov. 2

Kalman Filter: Motivation

- Life is full of scenarios in which we see a signal about some true underlying process but never observe the truth
- Missiles
- Polls
- Recessions
- Economic variables
- We typically have some belief of what the underlying object is, where it's going to go, and get some signal related to the object
- How do we put all our information together?

Kalman Filter: Preview to Lemma

Let X explain Y :

$$
Y=X \beta+\epsilon
$$

Then:

$$
\hat{\beta}=\left(X^{\prime} X\right)^{-1} X^{\prime} Y
$$

And:

$$
\hat{Y}=X \beta
$$

So:

$$
\begin{aligned}
\operatorname{Var}(Y-\hat{Y} \mid X) & =\operatorname{Var}(Y-X \beta \mid X) \\
& \left.=\operatorname{Var}(Y \mid X)+\beta^{2} \operatorname{Var}(X \mid X)-2 \beta \operatorname{Cov}(Y, X \mid X)\right) \\
& =\operatorname{Var}(Y \mid X)+2 \beta^{2} \operatorname{Var}(Y)^{-1}
\end{aligned}
$$

Kalman Filter: Lemma*

If:

$$
\left[\begin{array}{l}
X \\
Y
\end{array}\right] \sim \mathcal{N}\left(\left[\begin{array}{l}
0 \\
0
\end{array}\right],\left[\begin{array}{ll}
S_{X X^{\prime}} & S_{X Y^{\prime}} \\
S_{Y X^{\prime}} & S_{Y Y^{\prime}}
\end{array}\right]\right)
$$

Then:

$$
Y \mid X \sim \mathcal{N}\left(S_{X Y^{\prime}} S_{X X^{\prime}}^{-1} X, S_{Y Y^{\prime} \mid X}\right)
$$

Where, letting $A=S_{X Y^{\prime}} S_{X X}^{-1}$

$$
S_{Y Y^{\prime} \mid X}=S_{Y Y^{\prime}}-S_{X Y^{\prime}} S_{X X}^{-1} S_{Y X^{\prime}}=S_{Y Y^{\prime}}-A S_{X X^{\prime}}^{-1} A^{\prime}
$$

In other words, our expectation of X given Y comes from a regression, and our conditional variance is our unconditional variance minus the regression coefficient squared times the variance of our signal.

* This and the next two slides are inspired by Harald Uhlig's notation \& wonderful slides.

Kalman System

- You have an observation equation:

$$
Y_{t}=H_{t} \xi_{t}+\epsilon_{t} \quad \epsilon_{t} \sim \mathcal{N}\left(0, \Sigma_{t}\right)
$$

- And a state equation:

$$
\xi_{t+1}=F_{t+1} \xi_{t}+\eta_{t+1} \quad \eta_{t+1} \sim \mathcal{N}\left(0, \Phi_{t+1}\right)
$$

- We assume that ϵ_{t} and η_{t} are independent.
- Y_{t} is a noisy observation of ξ_{t}, which moves around with noise.

Updating our beliefs

- We start with some beliefs from last period about where ξ would be this period (called $\xi_{t \mid t-1}$).
- We summarize these as:

$$
\xi_{t \mid t-1} \sim \mathcal{N}\left(\hat{\xi}_{t \mid t-1}, \Omega_{t \mid t-1}\right)
$$

- We want to look at information today and say what we think ξ is, calling this $\xi_{t \mid t}$.

First Step: Best guess of what the signal will

 BE- We start with beliefs:

$$
\xi_{t} \sim \mathcal{N}\left(\hat{\xi}_{t \mid t-1}, \Omega_{t \mid t-1}\right)
$$

- And we know, as a law:

$$
Y_{t}=H_{t} \xi_{t}+\epsilon_{t} \quad \epsilon_{t} \sim \mathcal{N}\left(0, \Sigma_{t}\right)
$$

- Then we have our best guess of what Y will be, along with its variance:

$$
\begin{gathered}
\hat{Y}_{t}=H_{t} \xi_{t \mid t-1} \\
S_{Y Y \mid t}=H_{t} \Omega_{t \mid t-1} H_{t}+\Sigma_{t}
\end{gathered}
$$

SECOND STEP: USE SURPRISE INFO TO UPDATE PRIOR BELIEFS

- We have our unexpected information:

$$
\hat{\epsilon}_{t}=Y_{t}-\hat{Y}_{t}
$$

- Then our best fit is, like a regression fit:

$$
\hat{\xi}_{t \mid t}=\hat{\xi}_{t \mid t-1}+S_{\xi Y^{\prime} \mid t} S_{Y Y^{\prime} \mid t}^{-1} \hat{\epsilon}_{t}
$$

- Where our "signal" is:

$$
S_{\xi Y^{\prime} \mid t}=\Omega_{t \mid t-1} H_{t}^{\prime}
$$

- And our beliefs are updated:

$$
\Omega_{t \mid t}=\Omega_{t \mid t-1}-S_{\xi Y^{\prime} \mid t} S_{Y Y^{\prime} \mid t}^{-1} S_{Y \xi^{\prime} \mid t}
$$

Third Step: use current Best Beliefs To find TOMORROW'S BEST BELIEFS

- We have our beliefs for today, $\hat{\xi}_{t \mid t}$ and $\Omega_{t \mid t}$
- We want:

$$
\xi_{t+1} \sim \mathcal{N}\left(\hat{\xi}_{t+1 \mid t}, \Omega_{t+1 \mid t}\right)
$$

- Update using the law of motion:

$$
\begin{gathered}
\hat{\xi}_{t+1 \mid t}=F_{t+1} \hat{\xi}_{t \mid t} \\
\Omega_{t+1 \mid t}=F_{t+1} \Omega_{t \mid t} F_{t+1}^{\prime}+\Phi_{t+1}
\end{gathered}
$$

Summarizing the Kalman Filter

$$
Y_{t} \sim \mathcal{N}\left(H_{t} \xi_{t}, \Sigma_{t}\right), \quad \xi_{t} \sim \mathcal{N}\left(F_{t+1} \xi_{t}, \Phi_{t+1}\right)
$$

- Given $\xi_{t} \sim \mathcal{N}\left(\hat{\xi}_{t \mid t-1}, \Omega_{t \mid t-1}\right)$,

1. Forecast Y_{t} given what you know:

$$
\hat{Y}_{t}=H_{t} \hat{\xi}_{t \mid t-1} \quad S_{Y Y^{\prime} \mid t} H_{t} \Omega_{t \mid t-1} H_{t}^{\prime}+\Sigma_{t}
$$

2. Update ξ_{t} given surprise:

$$
\begin{gathered}
\hat{\xi}_{t \mid t}=\hat{\xi}_{t \mid t-1}+S_{\xi Y^{\prime} \mid t} S_{Y Y^{\prime} \mid t}^{-1}\left(Y_{t}-\hat{Y}_{t}\right) \\
\hat{\Omega}_{t \mid t}=\hat{\Omega}_{t \mid t-1}+S_{\xi Y^{\prime} \mid t} S_{Y Y^{\prime} \mid t}^{-1} S_{\xi Y^{\prime} \mid t}
\end{gathered}
$$

Where: $S_{\xi Y^{\prime} \mid t}=\Omega_{t \mid t-1} H_{t}^{\prime}$
3. Forecast and set up for tomorrow

$$
\hat{\xi}_{t+1 \mid t}=F_{t+1} \hat{\xi}_{t \mid t} \quad \Omega_{t+t \mid t}=F_{t+1} \Omega_{t \mid t} F_{t+1}^{\prime}+\Phi_{t+1}
$$

Coding it

See Kalman.m

Uses

- Estimating underlying data, like polls, recessions
- Alternatively, think of your regression coefficients as your unknown ξ and your data as Y_{t}
- Then for:

$$
Y_{t} \sim \mathcal{N}\left(H_{t} \xi_{t}, \Sigma_{t}\right), \quad \xi_{t} \sim \mathcal{N}\left(F_{t+1} \xi_{t}, \Phi_{t+1}\right)
$$

- Y_{t} is your dependent variable
- H_{t} is your independent variable
- Σ_{t} is your noise term
- F_{t+1} is just 1 , if your coefficients are constant
- Φ_{t+1} is zero, if your coefficients are constant.
- Now you can run Kalman filter point-by-point on your data to uncover your belief distribution over your coefficients.

