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Economics vs. Reality or, Economics is a Science
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Example

I Take a two-state Markov chain, in which you observe the
following data:

Xt = {2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 1, 1, 2, 2, 2, 2, 2, 1}

I Say we wanted to estimate the markov process:

π =

[
p11 1− p11

1− p22 p22

]
I How do we do it? (What is your estimate?)
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Maximum Likelihood

I We can write down the likelihood of seeing each type of
transition:

L1→1 = p11

L1→2 = p12

L2→1 = p21

L2→2 = p22

Or:

L =
T∏
i=1

(L1→1)x11(L1→2)x12(L2→1)x21(L2→2)x22
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Maximum Likelihood

I The likelihood:

L =
T∏
i=1

(p11)x11(1− p11)x12(1− p22)x21(p22)x22

I Taking logs:

logL =
T∑
i=1

x11 log(p11) + x12 log(1− p11)

+ x21 log(1− p22) + x22 log(p22)

I Is this all we can do?

(Hint: no.)

I The first observation gives us data!
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Better Maximum Likelihood
I The likelihood:

logL =
T∑
i=1

x11 log(p11) + x12 log(1− p11)

+ x21 log(1− p22) + x22 log(p22)

I Denote a dummy for the first observation as x [1] or x [2],
depending on the value:

logL =
T∑
i=1

x11 log(p11) + x12 log(1− p11)

+ x21 log(1− p22) + x22 log(p22)

+ x [1]
(

1− p22
2− p11 − p22

)
+ x [2]

(
1− p11

2− p11 − p22

)
I Why?
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Results

I We could do things closed form (how?)

I Or numerically (see Markov.m)

I What else can we do?
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Bayes Rule

P(A|B) =
P(A)P(B|A)

P(B)
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More Fun with Markovs

I Now imagine we didn’t observe the states xt directly, but
observed some noise process yt

I If state xt = 1, then yt ∼ N (µ1, σ
2
1)

I If state xt = 2, then ytN (µ2, σ
2
2)

I To skip annoying notation for the first step, let’s say we knew
the first state but from then on out we knew nothing else.
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Example

x1 = 1

π =

[
0.9 0.1

0.95 0.05

]
yt |xt = 1 ∼ N (0, 10)

yt |xt = 2 ∼ N (1, 4)

P(xt |yt) =
P(xt)P(yt |xt)

P(yt)

See Markov.2
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Kalman Filter: Motivation

I Life is full of scenarios in which we see a signal about some
true underlying process but never observe the truth

I Missiles

I Polls

I Recessions

I Economic variables

I We typically have some belief of what the underlying object is,
where it’s going to go, and get some signal related to the
object

I How do we put all our information together?
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Kalman Filter: Preview to Lemma

Let X explain Y :
Y = Xβ + ε

Then:
β̂ = (X ′X )−1X ′Y

And:
Ŷ = Xβ

So:

Var(Y − Ŷ |X ) = Var(Y − Xβ|X )

= Var(Y |X ) + β2Var(X |X )− 2βCov(Y ,X |X ))

= Var(Y |X ) + 2β2Var(Y )−1
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Kalman Filter: Lemma∗

If: [
X
Y

]
∼ N

([
0
0

]
,

[
SXX ′ SXY ′

SYX ′ SYY ′

])
Then:

Y |X ∼ N
(
SXY ′S

−1
XX ′X ,SYY ′|X

)
Where, letting A = SXY ′S

−1
XX

SYY ′|X = SYY ′ − SXY ′S
−1
XXSYX ′ = SYY ′ − AS−1XX ′A

′

In other words, our expectation of X given Y comes from a
regression, and our conditional variance is our unconditional
variance minus the regression coefficient squared times the
variance of our signal.

∗ This and the next two slides are inspired by Harald Uhlig’s notation &
wonderful slides.
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Kalman System

I You have an observation equation:

Yt = Htξt + εt εt ∼ N (0,Σt)

I And a state equation:

ξt+1 = Ft+1ξt + ηt+1 ηt+1 ∼ N (0,Φt+1)

I We assume that εt and ηt are independent.

I Yt is a noisy observation of ξt , which moves around with
noise.
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Updating our beliefs

I We start with some beliefs from last period about where ξ
would be this period (called ξt|t−1).

I We summarize these as:

ξt|t−1 ∼ N
(
ξ̂t|t−1,Ωt|t−1

)
I We want to look at information today and say what we think
ξ is, calling this ξt|t .
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First Step: best guess of what the signal will
be

I We start with beliefs:

ξt ∼ N
(
ξ̂t|t−1,Ωt|t−1

)
I And we know, as a law:

Yt = Htξt + εt εt ∼ N (0,Σt)

I Then we have our best guess of what Y will be, along with its
variance:

Ŷt = Htξt|t−1

SYY |t = HtΩt|t−1Ht + Σt
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Second Step: use surprise info to update
prior beliefs

I We have our unexpected information:

ε̂t = Yt − Ŷt

I Then our best fit is, like a regression fit:

ξ̂t|t = ξ̂t|t−1 + SξY ′|tS
−1
YY ′|t ε̂t

I Where our “signal” is:

SξY ′|t = Ωt|t−1H
′
t

I And our beliefs are updated:

Ωt|t = Ωt|t−1 − SξY ′|tS
−1
YY ′|tSY ξ′|t
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Third Step: use current best beliefs to find
tomorrow’s best beliefs

I We have our beliefs for today, ξ̂t|t and Ωt|t

I We want:
ξt+1 ∼ N (ξ̂t+1|t ,Ωt+1|t)

I Update using the law of motion:

ξ̂t+1|t = Ft+1ξ̂t|t

Ωt+1|t = Ft+1Ωt|tF
′
t+1 + Φt+1
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Summarizing the Kalman Filter

Yt ∼ N (Htξt ,Σt) , ξt ∼ N (Ft+1ξt ,Φt+1)

I Given ξt ∼ N (ξ̂t|t−1,Ωt|t−1),

1. Forecast Yt given what you know:

Ŷt = Ht ξ̂t|t−1 SYY ′|tHtΩt|t−1H
′
t + Σt

2. Update ξt given surprise:

ξ̂t|t = ξ̂t|t−1 + SξY ′|tS
−1
YY ′|t(Yt − Ŷt)

Ω̂t|t = Ω̂t|t−1 + SξY ′|tS
−1
YY ′|tSξY ′|t

Where: SξY ′|t = Ωt|t−1H
′
t

3. Forecast and set up for tomorrow

ξ̂t+1|t = Ft+1ξ̂t|t Ωt+t|t = Ft+1Ωt|tF
′
t+1 + Φt+1
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Coding it

See Kalman.m
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Uses

I Estimating underlying data, like polls, recessions

I Alternatively, think of your regression coefficients as your
unknown ξ and your data as Yt

I Then for:

Yt ∼ N (Htξt ,Σt) , ξt ∼ N (Ft+1ξt ,Φt+1)

I Yt is your dependent variable
I Ht is your independent variable
I Σt is your noise term
I Ft+1 is just 1, if your coefficients are constant
I Φt+1 is zero, if your coefficients are constant.

I Now you can run Kalman filter point-by-point on your data to
uncover your belief distribution over your coefficients.
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